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Recent experimental and theoretical studies of biomimetic membrane adhesions �Bruinsma et al., Phys. Rev.
E 61, 4253 �2000�; Boulbitch et al., Biophys. J. 81, 2743 �2001�� suggested that adhesion mediated by
receptor interactions is due to the interplay between membrane undulations and a double-well adhesion poten-
tial, and should be a first-order transition. We study the nucleation of membrane adhesion by finding the
minimum-energy path on the free energy surface constructed from the bending free energy of the membrane
and the double-well adhesion potential. We find a nucleation free energy barrier around 20kBT for adhesion of
flexible membranes, which corresponds to fast nucleation kinetics with a time scale of the order of seconds. For
cell membranes with a larger bending rigidity due to the actin network, the nucleation barrier is higher and may
require active processes such as the reorganization of the cortex network to overcome this barrier. Our scaling
analysis suggests that the geometry of the membrane shapes of the adhesion contact is controlled by the
adhesion length that is determined by the membrane rigidity, the barrier height, and the length scale of the
double-well potential, while the energetics of adhesion is determined by the depths of the adhesion potential.
These results are verified by numerical calculations.
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I. INTRODUCTION

Cell adhesion is crucial to many biological processes, in-
cluding cell differentiation and division, signal transduction,
and immunological responses �1–3�. Many different interac-
tions are involved in adhesions in vivo: lock-and-key type
interactions between proteins �4�, force-induced signaling,
reorganization of the actin filaments and cortex �5�, and vari-
ous generic physical forces �6�. Despite the complexity of
these interactions, many features of cell adhesion can be
qualitatively understood from basic physical principles
�7–18�.

In contrast to adhesion mediated by generic interactions
such as the van der Waals or electrostatic forces, biological
adhesions are induced by specific binding between proteins
with complementary domains— receptors and ligands. Other
interactions provide different regulation mechanisms that
fortify �e.g., cytoskeleton reorganization� or destabilize �e.g.,
repeller molecules� the adhesion contact. While adhesion re-
ceptors play the major role and are extensively studied, de-
adhesion forces are crucial to ensure specificity of the desired
adhesion �14,16�. The interplay between attractive specific
and �usually repulsive� nonspecific forces is a recurring
theme in cell adhesion and provides delicate control over the
adhesion-deadhesion kinetics in dynamic processes such as
cell migration or leukocyte rolling �19�.

While receptors and their ligands have been the focus of
biological studies over the past decades, the physical carrier
of these proteins—the cell membrane—has been extensively
studied by physicists and biophysicists since the fluid-mosaic
model was proposed by Singer and Nicolson �20�. Mem-
branes are composed of self-assembled lipid molecules and

form vesicles in aqueous solutions of typical sizes up to
10 �m. The physics of fluid or solid membranes are well
studied and comprehensively summarized in Refs. �6,21,22�.
In particular the interactions between flexible membranes
have been studied by Lipowsky �5,23� and Leibler and co-
workers �24,25�.

Recent advances in bioengineering techniques have en-
abled studies of adhesion of biomimetic membranes medi-
ated by specific and nonspecific interactions. Sackmann and
co-workers �26,27� have designed self-assembled vesicles
and monolayers supported by a polymer cushion to mimic
cell membranes and the extracellular matrix; in the mem-
branes they incorporated specific proteins �to mimic ligand-
receptor binding� and glycolipids �to mimic the glycocalyx�,
as well as other additives to stabilize the vesicle. This system
provides the first artificial system incorporating key elements
of cell adhesion and allows systematic studies of the me-
chanics and dynamics of adhesion without complications due
to factors present in biological cells.

Based on in vitro experiments using biomimetic vesicles,
Sackmann, Bruinsma, and coworkers �14,16,18� found that
cell adhesion is controlled by a double-well potential: a
weak-adhesion state at a large surface separation due to ge-
neric van der Waals interactions between the lipids and a
strong-adhesion state at a small surface separation due to
ligand-receptor binding; membrane undulation and glycolip-
ids induce repulsive forces that constitute the barrier between
the two minima. The adhesion proceeds in three steps
�15,17,28,29�. First, small adhesion contacts are formed
which are most likely induced by membrane undulations;
such a process is an activated process with a nucleation bar-
rier larger than 10kBT. Following nucleation, receptors dif-
fuse into the adhesion contacts and the contact area grows
accompanied by a depletion of repellers �glycolipids�; this is
the growth step. Finally, after receptors are depleted, the ad-
hesion contacts evolve like coarsening in a phase separation:
the number of adhesion contacts decreases and various small
focal contacts are formed with high densities of receptors,
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accompanied by a possible decrease in the total area of con-
tact. The entire process is likened to the wetting transition
�16�, and phenomenological parameters derived from the
wetting process, such as the surface tension, the spreading
pressure, and the contact angle, can be measured and related
to the underlying parameters of membrane adhesion, includ-
ing the elastic moduli of the membrane and the receptor
binding affinity �14,15,30�.

The conformations of adhered membranes are recorded in
situ by reflection interference contrast microscopy �RICM�
�31,32�, which provides direct observation and measure-
ments of the formation and growth of adhesion plaques.
However, RICM is unable to resolve adhesion contacts
smaller than 300 nm �15� and therefore cannot give direct
information on the nucleation process. On the other hand,
scaling arguments and Monte Carlo studies �23,33� usually
provide only order-of-magnitude estimates and do not yield
quantitative results that are experimentally testable. In par-
ticular, the nucleation step of the adhesion process has never
been studied.

In this paper we present a systematic study of the nucle-
ation step of adhesion. Following Refs. �14,16,17�, we as-
sume the “minimal” model of membrane adhesion that con-
sists of the elastic deformation energy of the flexible
membrane and a double-well adhesion potential: this mini-
mal model preserves the key features of cell adhesion and
also appears in systems with ligand-receptor interactions at
different length ranges—e.g., the immunological synapse
�34�. From a scaling analysis we find that the membrane
shapes are governed by the adhesion length R0 which is de-
termined from the bending rigidity of the membrane � and
the adhesion potential; the energy barrier is controlled by the
energy scale F0=��VeffL0

2, where Veff is the effective poten-
tial barrier height and L0 is the characteristic length of the
adhesion potential.

For typical values of the parameters in vesicle adhesion,
the energy scale F0�kBT; therefore, adhesion is a first-order
transition and nucleation proceeds along the “minimum-
energy path” governed by the effective potential �free en-
ergy�. Using the string method by E et al. �35�, we calculate
the minimum-energy path from the weakly bound state to a
well-developed adhesion contact. We find that the typical
energy barrier for adhesion between flexible membranes
is about �20−30�kBT, corresponding to a time scale of
0.1–1000 s. For adhesion of cells with actin cortices, which
have much larger bending moduli, the nucleation barrier is
higher and could be insurmountable by thermal undulations.
Active processes, such as actin reorganization and cell sig-
naling, are therefore probably important for providing addi-
tional mechanisms for stabilizing the adhesion contact. In
particular, we point out that in the binding between a T-cell
and an antigen-presenting cell, the energy barrier of T-cell
receptor binding controls the final morphology.

II. MODEL AND SOLUTION

A. Model description

The thickness of a self-assembled monolayer or bilayer is
about 10–50 nm, usually negligible compared to its spatial

extension ��10 �m�. Therefore the macroscopic behavior of
membranes is mostly determined by their geometric shapes
and to a good approximation independent of the microscopic
degrees of freedom of the consistituent amphiphilic mol-
ecules. Flexible membranes as random surfaces have been
extensively studied in the past decades by physicists; theo-
retical models and results are summarized in Ref. �6�. For
cell membranes or self-assembled monolayers with biologi-
cal relevance, see Refs. �5,22�; a more up-to-date review of
simulation methods and phenomenological models can be
found in Ref. �36�.

For a single membrane that is homogeneous, smooth, and
noninteracting, Helfrich �37� proposed that up to second-
order derivatives with respect to the local coordinates of the
membrane shape, the elastic energy of a deformed membrane
is given by

He = �
S
�� +

1

2
��H − H0�2 + �̄K	dA . �1�

Here � is the �local� surface tension conjugate to the surface
area; � and �̄ are elastic moduli known as the bending rigid-
ity and the Gaussian rigidity coupled to the mean curvature
H and the Gaussian curvature K, respectively; H0 is the
spontaneous curvature, which is zero for a symmetric bilayer
and assumed to be the case here. The integral is over the
entire membrane area.

In this paper we study the adhesion between a flexible
membrane and a rigid flat surface, corresponding to the ex-
perimental system studied by Bruinsma et al. �14�. In this
setting the membrane is almost flat and does not intersect
itself; hence, the separation between the membrane and the
flat surface provides a natural representation of the mem-
brane shape �cf. Fig. 1�, z=z�x ,y�, also called the Monge
representation.1 The elastic energy of the deformed mem-
brane up to the second order derivatives of z�x ,y� is given by

1In the case of adhesion between two membranes, the elastic en-
ergy is divided into two parts: one due to deformations of the “cen-
ter of mass” of the binary system, the other dependent on the rela-
tive separation between the membranes; after integrating out the
center-of-mass deformations, one can write the elastic energy de-
pendent on the relative separation in the same form as above with
the additive bending rigidity �cf. Ref. �13��:

�−1 = �1
−1 + �2

−1.

x

y

z(x, y)

FIG. 1. �Color online� Monge representation of a near-flat mem-
brane shape.
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He =� 
�

2
��z�x,y��2 + ���z�x,y��2�dx dy . �2�

The elastic energy gives the “kinetic” part of the Hamil-
tonian.

Next we consider the interaction potential between the
adhesion surfaces. Generic �nonspecific� interactions, includ-
ing the van der Waals interaction, electrostatic interaction,
and hydration forces �see, for example, Ref. �6�, Chap. 3�
result in a potential Vg with a minimum around 10–100 nm
�14,28,38�.

The interactions mediated by receptors and repellers on
the membrane have been calculated using a molecular model
in our previous paper.2 The interaction potential Vs�z ;�i� de-
pends on the local separation between surfaces z�r� and the
receptor densities �i�r�. For homogeneously distributed im-
mobile receptors on the substrate �on the time and length
scales of interest�, Vs is a function of the surface separation z
only. When the receptors are mobile, their distribution �i�r�
will be coupled to the local separation z�r�. Here we assume
that nucleation involves a considerable barrier and is there-
fore slow; this corresponds to, e.g., vesicle adhesion with a
high repeller concentration �40�. In this regime, states along
the nucleation path will be close to equilibrium and we may
use a quasi-equilibrium free energy in terms of any conve-
nient coarse-grained variable, with other variables eliminated
by minimizing the free energy over them at a fixed value of
the chosen variable. For our current problem, this means that
the molecular distributions are averaged to give an effective
interaction potential V�z� that only depends on the separa-
tion. Provided the quasi-equilibrium assumption holds, the
actual nucleation path in the two-order-parameter space z�r�
and �i�r� should be close to the minimum-energy path de-
termined by using only V�z�. In particular, the saddle point
on the free energy landscape, where the free energy gradient
vanishes, should be completely identical, whether the free
energy surface is given using the two-order-parameter repre-
sentation in terms of both z�r� and �i�r� or using a reduced
representation in terms of z�r� only.

The total Hamiltonian is given by �r= �x ,y��

H�z�r�� =� 
�

2
��z�r��2 + ���z�r��2 + V�z�r���d2r . �3�

V�z� is the superposition of the generic potential Vg�z� and
the specific binding interaction potential Vs�z�.

The free energy �effective potential� of the model given
by Eq. �3� can be calculated using the standard field-theoretic
method by integrating out short-wavelength fluctuations of
the separation variable z�r� �34,41�. In particular, membrane
undulations induce an effective repulsion which contributes
to the overall interaction potential V�z�r�� �5�. Since these
fluctuation effects are not our main focus here, we apply a
mean-field approximation and assume the free energy takes
the same form as the Hamiltonian with renormalized elastic

constants and interaction potential; these renormalized pa-
rameters are experimentally measurable.

With these approximations we can write the effective po-
tential of our model as

F�z�r�� =� 
�

2
��z�r��2 + ���z�r��2 + V�z�r���d2r . �4�

The adhesion �interaction� potential V�z� has a double-well
shape �14,16� and is characterized by the depths and loca-
tions of the minima, as is schematically shown in Fig. 2. The
parameters in Eq. �4� have been measured by Sackmann and
co-workers in several systems �see Ref. �11�, p. 195, and
Refs. �16,18,29,30,42��. � is about 20kBT for a bilayer mem-
brane and of order 500kBT for the actin cortices. � is related
to the so-called capillary length �18�

Rc = ��/� ,

which defines the length scale above which surface tension
becomes important. Typical values for Rc are about
0.1–1 �m �14,18�. Generally the size of adhesion plaques in
the initial stage of adhesion is smaller than Rc; therefore, the
surface energy is insignificant compared with the bending
energy.

For clarity of our discussion it is convenient to scale the
separation z�r� and the radial coordinate r by the natural
length scales arising from the adhesion potential and the
membrane elasticity. Introducing a lateral length scale R0, a
vertical length scale L0, and an interaction energy scale V2
�note that V2 is given in units of kBT per unit area� and
performing the rescaling

r/R0 → r, l/L0 → l, z/L0 → z, V/V2 → v ,

we obtain

F�z� =� ��L0
2

2R0
2 ��2z�2 + �L0

2��z�2 + V2R0
2v�z�	d2r . �5�

In the rigidity-dominant regime, we choose

2See Ref. �50� and also Refs. �12,14,39� for phenomenological
treatments.

∆L = Z2 − Z1

W1 W2

V1 V2 = V1 − ∆V

Z∗

Z2Z1

FIG. 2. Schematic representation of the interaction potential
V�z�. The shape of the potential is similar to that calculated from a
phenomenological model in Ref. �14�. Only the double-well part of
the potential is relevant for our calculations; the potential is char-
acterized by the barrier position z* and the positions Z1, Z2 and the
depths W1, W2 of the minima. In our numerical calculations we
choose the functional form for V�z� such that the widths W1�Z1

and W2�Z2 for fast convergence in numerical calculations.
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V2R0
2 =

�L0
2

R0
2 ,

such that the length scales are determined by the adhesion
potential V�z� and the bending rigidity. This leads to

F�z� = ��V2L0
2� �1

2
��2z�2 +

�

2
��z�2 + v�z�	d2r , �5��

where the rescaled surface tension is

� =
2�L0

��V2

=
2R0

2

Rc
2 �6�

and

R0 = 
�L0
2

V2
�1/4

�7�

is the adhesion length �similar to the “persistence length”
defined in Ref. �18��, which controls the boundary width of
the adhesion contact. In general R0�10 nm�Rc; therefore,
the surface tension term is unimportant.

The combination ��V2L0
2 �the lateral length scale L0 is

defined later� sets the magnitude of the free energy. If
�V2L0

2�1, then the minima of V�z� are separated by a large
barrier �cf. Refs. �5,23��. In this regime, thermal fluctuations
do not affect the physics at length scale L0, and we can apply
the mean-field capillary approximation.

B. Scaling analysis of the nucleation barrier

Lipowsky and co-workers have systematically studied the
dynamics and thermodynamics of membrane adhesion medi-
ated by a double-well potential by scaling arguments and
Monte Carlo simulations �40,43�. They distinguish between
two types of transitions: the unbound-bound transition—i.e.,
transition from unbound membranes infinite apart to bound
within the double-well potential—and the lateral phase sepa-
ration, corresponding to transition between membrane states
at different separations of the two potential minima. The
unbound-bound transition is determined by the potential
depths and widths, while the lateral phase separation is con-
trolled by the barrier height and the separation between the
minima. In this paper we focus on the transition from the
loosely bound metastable minimum to the global minimum
of the potential, which is related to the lateral phase separa-
tion. Experimental studies found that the biomimetic vesicle
adhesion is a first-order transition with a sizable barrier
�15,28�; therefore, it should proceed via a nucleation-and-
growth pathway. Our study is geared primarily at the vesicle
adhesion problem, but we believe that some of our results are
also applicable to cell adhesion.

In this subsection we perform a scaling analysis of the
nucleation dynamics using the classical capillary approxima-
tion. We assume that initially the membrane is in a loosely
bound state at a larger separation Z2 in a flat shape. Nucle-
ation of an adhesion contact is driven by membrane undula-
tions which result in a “droplet” as shown in Fig. 3. In a
mean-field picture, the boundary of the adhesion droplet is

regular �a simple curve� and we assume the droplet to be
axisymmetric and the membrane deviation z�r� to be a func-
tion of the radial coordinate.

If the potential depths are comparable— V1�V2,
�V�V2—the length scale L0 associated with the adhesion
potential V�z� is naturally chosen to be the separation be-
tween the minima �L=Z2−Z1; otherwise, when �V	V2, L0
should be taken to be the separation of the metastable mini-
mum �V2� from the barrier Z2−Z*.

In the first case V1�V2, there is a well-defined adhesion
“nucleus” which has size R in the interior and an “interfacial
ring” of width �R �cf. Fig. 3�. The length scales are

L0 = �L ,

R0 = 
��L2

V2
�1/4

,

and the energy scale is

F0 = ��V2�L2.

From scaling analysis we have

�2z �
L0

�R2 ⇒ �� ��2z�2dA �
�RL0

2

�R3 ; �8�

the interfacial energy scales as

R�RV2.

Combining these two contributions we find

�R � R0 = 
��L2

V2
�1/4

�9�

and the line tension is


 � �RV2 � �1/4V2
3/4�L1/2. �10�

The total free energy of the droplet is

F = − �R2�V + �R
 . �11�

At the critical radius R‡ the free energy attains a maximum
and we have

R‡ �
V2

�V
�R =

V2

�V

��L2

V2
�1/4

=
V2

�V
R0, �12�

z(r)

r

∆L ∆R

R

FIG. 3. �Color online� Illustration of a regular adhesion
droplet.
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F‡ �
V2

2

�V
�R2 =

V2

�V
��V2�L2�1/2 =

V2

�V
F0. �13�

When the potential depth difference is larger than the bar-
rier height— V2 /�V�1—the length scale

L0 � �Z2 − Z*� = L2

and the radius R‡ is comparable to the boundary width �R.
The above results become

R‡ � �R � R0 = 
�L2
2

V2
�1/4

, �12��

F‡ � �R0
2V2 = F0. �13��

From Eqs. �12�, �13�, �12��, and �13�� we see that R0 and
F0 control the length �R and �R� and energy �F� scales,
respectively. The dependence of R0 on the barrier height R0
�V2

−1/4 is different from typical correlation length in liquid-
gas systems, which corresponds to R0�V2

−1/2. This difference
is due to the appearance of the square Laplacian term as
opposed to a square gradient term in the free energy func-
tional.

We note that the capillary analysis is valid only if
F0�kBT. When F0�kBT, membrane undulations result in
adhesion contacts with irregular shapes. In particular,

�V2�L2 � 1 �14�

marks the crossover of the binding transition from first order
to second order �23�.

C. Minimum-energy-path calculation

In the mean-field picture, nucleation proceeds along the
“minimum-energy path,” which corresponds to the “valley”
on the free energy landscape. Specifically we want to find the
minimum-energy path z�r ,s� �0
s
1� that connects the
initial state z�r ,s=0� �flat membrane� and the terminal state
z�r ,s=1� �a well-developed adhesion droplet�.

The minimum-energy path �MEP� is defined such that the
tangent along the path �sz�r ,s� is parallel to the free energy
gradient �F�z� /�z at any point on the path, or put in math-
ematical terms,


�F�z�
�z

��

=
�F�z�

�z
· �I − ŝŝ� = 0,

ŝ =
�sz�r,s�

��sz�r,s��
. �15�

To calculate z�r ,s� we adopt the string method by E and
co-workers �35�, which is a modified steepest descent

�z�R,s;t�
�t

= −
�F�z�

�z
· �I − ŝŝ� + �ŝ . �16�

Here � is a Lagrange multiplier which is used to fix the
parametrization s. The choice of � is arbitrary, and we adopt
the same parametrization as given in Ref. �35�, which re-

quires the points be uniformly separated along the path,

��sz�r,s�� = const.

This parametrization has a close form expression for �.
In our model, the free energy gradient is given by

�F�z�
�z

= �2z − ��z + v��z� . �17�

The initial state z�r ,0� is a flat surface z�r ,0�=Z2 �at the
metastable minimum�, while the terminal state z�r ,1� needs
to be a well-developed adhesion droplet that has passed the
nucleation barrier. To find the final state, we impose a para-
bolic adhesion droplet whose frontier has passed the barrier
Z* �cf. Fig. 2� and let it evolve along the free energy gradient
�steepest descent�. If the droplet size is large enough, it will
reach steady growth after evolving for some steps; this final
profile is taken as the terminal state z�r ,1�. The initial path
z�r ,s ; t=0� is generated by a simple linear interpolation be-
tween z�r ,0�=Z2 and z�r ,1�. Because the terminal state
z�r ,1� is not stationary �the droplet will still grow�, it will
also evolve in the iteration using Eq. �16�; therefore, our
MEP resembles a “rope” with one end fixed, instead of the
“string” with both ends fixed as in the original paper by E et
al.

We adopt an explicit forward time splitting for the poten-
tial V�z� and an implicit splitting for the differential opera-
tors, which ensures fast convergence.3 Iteration stops when
the maximum free energy of the reaction path, maxsF�z�s��,
reaches a constant and the maximum residual gradient
maxs��F�z��� is used to test the accuracy of convergence. In
the next section we discuss results of this minimum-energy-
path calculation.

III. RESULTS AND DISCUSSION

In this section we discuss numerical results of the MEP
calculations. Before the discussion we first estimate the typi-
cal length and energy scales associated with the adhesion
process. The bending rigidity � is about 20kBT for bilayer
membranes and 500kBT for the actin cortex �16,18�. The
separation �L is between 5 and 50 nm, depending on the size
of the receptors �14,44�, and we take it to be 5 nm. The
barrier height V2 is estimated to be 10−5 J /m2 �2.4
�10−3kBT /nm2 at T=300 K� �14�. Therefore the energy
scale for flexible membranes is

F0 = ��V2�L2�1/2 � 1.2kBT ,

which indeed reflects flexibility of the membrane. The real
barrier F‡ ranges from 5kBT to 30kBT. The lateral length
scale is

R0 = �4 ��L2/V2 � 20 nm.

In cell adhesions, the cell membrane and the embedded ad-
hesion molecules �e.g., integrins� are coupled to the cyto-
skeleton, giving rise to a larger bending rigidity due to the

3See, for example, the papers in Ref. �51�.
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underlying actin cortex. As the typical separation between
anchoring points in an actin network is of order 100 nm, the
apparent bending rigidity � will depend on the relevant
length scale and lies between 20kBT �below 100 nm� and
500kBT �around 1 �m�. As the actual length scale is un-
known a priori and depends on the bending rigidity, here we
take as an estimate of � to be between 50kBT and 100kBT.

The capillary length

Rc = ��/�

is usually of order 0.1 �m �18�; hence, the dimensionless
surface tension

� �
R0

2

Rc
2

is small and we neglect the surface tension term for most of
our calculations; we include a brief discussion of its effects
after presenting our main results.

We parametrize the scaled potential V�z� as a sum

V�z� = V1�
 z

Z1
− 1�2

− 1	exp�− 4
 z

Z1
− 1�2	

+ V2�
 z

Z2
− 1�2

− 1	exp�− 4
 z

Z2
− 1�2	 �18�

which is minimized at z=Z1 and z=Z2 and has a barrier
located at approximately z=0. An example is shown in Fig.
4. In most situations the separations of the minima from the
barrier Z*−Z1 and Z2−Z* are comparable; we choose them
to be equal �i.e., the positions of minima are symmetric rela-
tive to the barrier position�. As the nucleation dynamics de-
pends primarily on a few key features of the double-well
potential—the difference between the two energy minima,
the barrier height from the metastable minimum, and the
spatial distance between the two minima—the specific func-
tional form of the potential is inconsequential. The present
one is chosen purely based on convenience.

In Fig. 5 we present two representative nucleation paths.
The barrier position Z* is fixed at the origin, and the barrier
height is V2=1; the potential minima are located at Z1=−1
and Z2=1, and we choose two depths V1=1.3 and V1=4,
giving potential depth differences �V=0.3 and 3, respec-
tively. Figures 5�a� and 5�c� show the evolution of membrane
shapes along the MEP: the membrane conformation evolves
in the direction of the arrow; Figs. 5�b� and 5�d� give the free
energy along the MEP with �red� circles corresponding to
each membrane shape shown on the left. The �red� thick
curves in �a� and �c� are the critical shapes corresponding to
the maximum free energy along the nucleation contour
�saddle point�.

In the case that potential depths are comparable, �V
=0.3�V2=1, we see that the critical droplet is well devel-
oped with radius R‡�7R0=140 nm and a boundary width
�R�3R0�60 nm: this is similar to the classical nucleation
scenario where capillary approximation applies. For �V=3
�V2, the critical shape has not formed an adhesion contact
yet: the frontier just passes the barrier position Z*=0. In this
latter case the critical droplet size is about equal to the
boundary width �R in the first case.

In the first case �V1�V2�, the energy barrier is 51kBT, and
in the second case �V1�V2�, the energy barrier is about
18kBT. To have a better understanding of the nucleation dy-
namics, we estimate the characteristic time scales of mem-
brane undulations. By a dimensional analysis, we have

�un � �L3/kBT = 0.24 ns

for L=1 nm and viscosity of water �=0.001 Pa s. For an
energy barrier of 18kBT, the nucleation time is

�0 � �une
−F‡/kBT � 15 ms,

which suggests fast nucleation dynamics. An energy barrier
of 51kBT is essentially insurmountable. In most biological
processes or biomimetic experiments, the nucleation time
scale is of order seconds to minutes, which corresponds to an
energy barrier of �20–30�kBT. Our results suggest that adhe-
sion driven by membrane undulations is dynamically forbid-
den if the double-well potential has comparable potential
minima. In real processes this is overcome by different
mechanisms: in cell adhesion, receptors aggregate locally to
high densities to enhance the adhesion strength �14�; further-
more, reorganization of the actin cortex can fortify the adhe-
sion contact; other mechanisms such as dimerization of inte-
grin receptors can also be triggered by cell signaling, which
provides a mechanism to stabilize the adhesion contact.

Komura and Andelman �45� studied the membrane shape
near the phase boundary under lateral phase separation in-
duced by adhesion and found that the membrane deformation
is nonmonotonic near the phase boundary between coexist-
ing phases. Our results show that this nonmonotonic feature
is present throughout the adhesion process. As we shall see at
the end of this section, this feature is due to the bending
energy term; increasing surface tension will diminish this
feature.
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FIG. 4. �Color online� Shape of the potential V�z� for Z1=−1,
Z2=1, V1=2, and V2=1; Z* is fixed at the origin.
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To study the crossover between the two scenarios shown
in Fig. 5, we plot the critical membrane shapes for different
�V in Fig. 6. We note that for 2
�V
4 the critical shape is
almost invariant: in this regime the barrier height V2 is small
compared to the potential depth difference �V and nucle-
ation is determined by the potential near the metastable mini-
mum at Z2 and independent of �V. On the other hand, when
�V is small, the critical shape has a well-developed adhesion
contact with increasing radii as �V becomes smaller, and one
can compare the critical radius and free energy with scaling
results from the capillary approximation.

In Fig. 7 we plot the free energy barrier F‡ �maximum on
the MEP� and the critical nucleus R‡, defined as the radius of
the critical profile within the adhesion minimum �with z�r�
�0�. The plot is on a log-log scale. Scaling arguments imply
that when �V�V2, the free energy barrier and the critical
nucleus both scale as 1 /�V. Numerical results indeed con-
firm this scaling. When �V�V2, scaling arguments suggest
that �V is irrelevant; this trend also holds approximately.

Inspecting Fig. 6 we notice that the boundary shapes of
the critical profiles at different �V are similar, which implies
that they are controlled by the same length scale. Scaling
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FIG. 5. �Color online� Evolution of the membrane shape ��a� and �c�� and the free energy ��b� and �d�� along the minimum-energy path
�0
s
1 is the reaction coordinate� for different adhesion potentials. Free energies of the representative shapes in �a� and �c� are shown as
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analysis suggests that in the bending dominant regime the
controlling length scale is R0= ��L0

2 /V2�1/4, which is indepen-
dent of the potential depth difference, in particular the inter-
facial width �R�R0. In our calculations, the length scale of
the adhesion potential L0 is roughly kept constant; therefore,
R0 is constant and the geometry of membrane shapes is simi-
lar. On the other hand, the radius of the critical droplet in-
creases as �V decreases and the energy barrier is determined
by the potential depths. Therefore we conclude that the po-
tential depths determine the energetics of nucleation, while
the length scale R0 controls the evolution of membrane
shapes along the nucleation path.

To verify the dependence of nucleation on the energy-
minimum separation �L, we calculate the energy barrier F‡

and the critical radius R‡ for the interaction potential V�z�
with potential minima having the same depths but varying
locations. These results are shown in Fig. 8. The potential
depths are fixed at V1=2 and V2=1, and the minima are
located at Z1=−L and Z2=L with L varying from 1 to 2. We
see that scaling relations R‡��L1/2 and F‡��L fit well with
numerical results.

Finally we study the effects of the surface tension term.
Figure 9�a� shows the development of an adhesion nucleus
under strong surface tension �=3. The potential depths are
V1=2 and V2=1, and the minima are located at Z1=−1 and
Z2=1. Compared to the case with no surface tension, we
observe that the membrane shape is flatter and the extra sur-
face energy increases the critical nucleus size. Figure 9�b�
shows the crossover of the critical membrane shape from the
rigidity-dominant regime to the tension-dominant regime;
the straightening of the membrane shape due to surface ten-
sion is apparent. In Fig. 9�c� we plot the energy barrier
against the surface tension. Under a small surface tension,
the size of the critical nucleus does not change much and is
still determined by the adhesion length R0; hence, the total
surface area of the adhesion droplet is almost constant and
the free energy should be a linear function of the surface
tension: this expectation is borne out by the numerical re-
sults.

In summary, we have shown that the energy barrier of
adhesion is determined by F0=��V2�L2 and the evolution of
the membrane shapes is controlled by the adhesion length
R0= ���L2 /V2�1/4. Our numerical calculations yield that in
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biomimetic membrane adhesion experiments, the adhesion
barrier is about 20kBT with a critical size of 50–100 nm,
while for cell adhesions nucleation may have a higher barrier
and larger critical size, which is only to be overcome by
active processes that may involve cell signaling. The scaling
relations obtained from capillary approximations are in good
agreement with numerical results. In addition, we find that
the surface tension term flattens out the membrane shape and
contributes an additional surface energy to the energy barrier

that is a linear function of the surface tension when the ten-
sion is small.

A prominent example of cell adhesion controlled by a
double-well potential is the formation of immunological syn-
apses, which are focal contacts between a T-lymphocyte cell
and an antigen-presenting cell �APC� �46�. The synapse pri-
marily consists of the T-cell receptor �TCR�–major histocom-
patibility molecule-peptide complex �MHC� bonds �15 nm�
and integrin �ICAM-1/LFA-1� bonds �40 nm�. At high TCR
expression, a fully developed synapse with both TCR-MHC
bonds and integrin bonds is formed �46,47�. When TCR ex-
pression is low �e.g., in premature T-cells�, the binary system
of TCR and integrin binding should exhibit a double-well
interaction potential separated by a large barrier �34�. In this
regime, only small transient contacts are observed in com-
puter simulations �34,48,49�. Different kinetic scenarios for
the synapse formation have been identified by Weikl and
Lipowsky �49� who suggested that a significant nucleation
barrier may exist in this regime. Our calculation yields an
explicit quantitative estimate for this barrier, which can in-
deed be considerable due to the large separation ��25 nm�
and membrane rigidity ��100kBT�. In this regard, our results
complement the studies by Chakraborty et al. and Lipowksy
et al., which are limited to no barrier or small barriers.

IV. CONCLUSION

In this paper we have systematically studied the nucle-
ation of membrane adhesions mediated by specific receptor
binding. Scaling analysis suggests that the geometry of the
membrane shape evolution is controlled by the adhesion
length R0 while the energetics is controlled by the energy
scale F0=��V2L0

2, where L0 is the length scale of the adhe-
sion potential, V2 is the barrier height, and � is the bending
rigidity. By applying a minimum-energy-path calculation we
find that the typical energy barrier for biomimetic membrane
adhesion is of the order of �20–30�kBT, which corresponds
to a nucleation time scale of the order of seconds to an hour;
the typical size of a nucleus is found to be 100 nm which is
comparable to the estimation by Boulbitch et al. �15�. For
cell adhesion, the energy barrier should be significant and
cannot be overcome by membrane undulations due to ther-
mal fluctuations. This suggests that active processes, such as
actin reorganization or receptor aggregation, are necessary to
overcome the energy barrier.

Surface tension increases the nucleation barrier as well as
the size of the critical nucleus. But we find that at a small
surface tension, the shape of the nucleus is still controlled by
the adhesion length R0 which is almost unaffected by the
surface tension and the total surface area of the critical ad-
hesion droplet is almost invariant. We also show that the
nonmonotonic feature in the membrane shape near the phase
boundary �as is first found in Ref. �45�� is due to the bending
energy term and is reduced at increasing surface tension.
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